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ON GAUSS-KRONROD QUADRATURE FORMULAE 
OF CHEBYSHEV TYPE 

SOTIRIOS E. NOTARIS 

ABSTRACT. We prove that there is no positive measure du on (a, b) such 
that the corresponding Gauss-Kronrod quadrature formula is also a Chebyshev 
quadrature formula. The same is true if we consider measures of the form 
do(t) = w)(t)dt, where co(t) is even, on a symmetric interval (-a, a), and 
the Gauss-Kronrod formula is required to have equal weights only for n even. 
We also show that the only positive and even measure do(t) = do(-t) on 
(-1, 1) for which the Gauss-Kronrod formula has all weights equal if n = 1, 
or has the form f 1 f(t) do(t) = W En=, f(Tv) + wI f (1) + w En-2 f(z) + 
wlf(-1) + RK(f) for all n > 2, is the Chebyshev measure of the first kind 
dac(t) = ( 1 - /2dt . 

1. INTRODUCTION 

Let da be a positive measure on the interval (a, b), whose moments all 
exist, 

fb 
(1.1) ii=j tida (t)< o, i=0,1,2,.... 

The Gauss-Kronrod quadrature formula for da has the form 
b n n+1 

(1.2) f (t) du (t) = Zaif (rv) + Z A ,f (Tu ) + R K(f), 
v=1 Yi=1 

where rv = T(n) are the zeros of the nth-degree (monic) orthogonal polynomial 
7r(.) = 7r(.; du), and the T* = = ( and = are deter 
mined such that (1.2) has maximum degree of exactness (at least) 3n + 1 , i.e., 
RK(f) = 0 for all f E IP3n+i . Then the TX must be the zeros of a (monic) poly- 
nomial rn+l(.) = 7 n+l(.; du), called the Stieltjes polynomial, which satisfies 
the orthogonality condition 

b 
(1.3) |7X(tt)n7l(t)tda(t)=0, i=O, 1, ... ,n, 

that is, 7 is orthogonal to all polynomials of lower degree with respect to 
the oscillatory measure da*(t) = 7n (t)du (t) on (a, b) . It can be shown that 
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7r * is uniquely defined by (1.3) (see [1, ?4]). However, since da* changes 
sign on (a, b), the reality of the r* cannot in general be assumed. 

A quadrature rule 
b n 

(1.4) ]f (t) du (t) = E wif(ti) + Rnc(f) 
a i=1 

with equal weights 

(1.5) w~~~~~(n) = wn) =....= (n) (1.5) W 2W 

is called a Chebyshev quadrature rule, if the nodes tk = are real and if tkk 
(1.4) has degree of exactness (at least) n. By setting f(t) = 1 in (1.4), we 
find, in view of ( 1.5), 

(1.6) wi 
Po 

i = 1 2,W-n. n 
It is well known that the only equally weighted (for all n ) Gauss formula is 

the one relative to the Chebyshev measure of the first kind, dac(t) = 
(1 - t2)-1/2dt on (-1, 1) (see, e.g., [2, ?4]). If the Gauss formula has the 
equicoefficient property only for n even, then among the positive measures of 
the form da(t) = w(t)dt, where w(t) is even, with symmetric support, the 
only one admitting such a formula is, up to a linear transformation, 

(1.7) daP(t) = { ItI(t2 _ 2)-1/2(I - t2)-1/2dt t E [u 1] 
0 elsewhere 

(see [3, ?6]). 
The only Gauss-Kronrod formula known, which is almost of Chebyshev type, 

is the one relative to the Chebyshev measure of the first kind, 

Lf(t)(l -t2)-1/2 dt= - E f COS 6~ 7 +R KC(f) 
(1.8) 2n_ [-I~( i7 

f(t)(1 - t)/2 dt = 2 [f(-l) + f cos y + 2f(k)J 

+RKC(f), n>2 
(see, e.g., [6, equation (43)]). Incidentally, the second formula in (1.8) is the 
same as the Gauss-Lobatto formula for dac(t) = (1 - t2)-1/2dt with 2n + 1 
points, hence it has elevated degree of exactness 4n - 1 . 

Equally-weighted quadrature rules are useful in practice because they min- 
imize the effect of random errors in the values of f(ti) in (1.4). Therefore, 
it is interesting to examine if there are positive measures admitting Gauss- 
Kronrod formulae of Chebyshev type. In the next section we show that such 
measures do not exist. This is also the case if we consider measures of the form 
da(t) = w(t)dt, where w(t) is even, with symmetric support, and the Gauss- 
Kronrod formula is required to have equal weights only for n even. Naturally, 
one then wonders if there are at least other Gauss-Kronrod formulae of the form 
(1.8). In ?3, we prove that the only positive and even measure da(t) = da(-t) 
on (-1, 1), which gives rise to a Gauss-Kronrod formula of the type (1.8), 
is dac(t) = (1 - t2)-1/2dt. In both sections we follow the technique used by 
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Geronimus [4, 5] to show that the only Gauss formula of Chebyshev type is the 
one relative to the Chebyshev measure of the first kind. 

2. NONEXISTENCE OF GAUSs-KRONROD QUADRATURE FORMULAE 
OF CHEBYSHEV TYPE 

It is known that for any positive measure da on (a, b) the respective 
(monic) orthogonal polynomials {mi(*; do)} satisfy a three-term recurrence 
relation of the form 
(2.1) 7r..I (t) = 0, zo(t) = 1, 

7i+i (t) = (t - ai)7ti(t) - 8igri-1 (t), i = 0, 1, 2, . .. 

where the recursion coefficients ai = ai(da) and /3i = 8i1(du) are given by the 
formulae 

b 
t[r(t)]2dvt ai= 

f t[7t du(t) =-0 1,2,.... 

(2.2) fa [7t(t)]2 do(t) - 

fib = j7di(t),t = fi[ (t)]2 do(t), i= 1,2,... 

hence fli > 0, 1 = 0, 1, 2 . Using (2.1) and induction, we can show that 

tn (t) =tn - (E li) tn-1 

(2.3) + n-1 --1 

+ E aiaj - f 
li tn-2 + ... , n > 1 

A similar formula can be obtained for the corresponding Stieltjes polynomial. 

Lemma 2.1. The Stieltjes polynomial 7r (.; da) has theform 
nn 

Un+l(t) = tn- ~I: t 

i=O 

(2.4) n n+ ) 

+ a (iaj - 0 
it-1 n > 1. 

kiJ-J=O i=l 

Proof. Expanding 7n* in terms of 7i, we have 

(2.5) i n+1(t) = 7it+l(t) + cornn(t) + - + Cn-17t(t) + Cniro(t), 

and then substituting into (1.3) with i = 0, 1 yields, by means of (2.2) and 
orthogonality, 

(2.6) co = 0, Ci = -fn+l. 

These, together with (2.3) and (2.5), imply (2.4). O 

We can now prove our main result. 
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Theorem 2.2. There is no positive measure da on (a, b) relative to which (1.2) 
is also a Chebyshev quadrature formula for each n = 1, 2, .... 

Proof. Assume that there exists a positive measure da on (a, b) for which 
(1.2) is a Chebyshev quadrature formula, that is, has the form 

(2.7) Ia f du (t) + 1 : f ( iv) + f ()] + RK(f). 

Since for each n = 1, 2, ... , (2.7) is exact for f (t) = t and f (t) = t2, we 
obtain 

n n+l n n+l 

(2.8) Z, ? TZr = (2n + 1)ml, T2 + 1 T 2 = (2n + l)m2, 
v=l Y=1 v=l ,u=l 

where m = yu /Iuo and m22 - j2/uo0. Let 

(2.9) P2n+1(t) = 7n(t)2t+ (t) 

with 7n(t) = n=(t-T,) and 7t* (t) = i1I (t- T*)). First, because of (2.8) 
we must have 

(2.10) p2n+l(t) = t2n+l- (2n+1)mlt2n+ 2n+ [(2n + )m2 -m2] t2n-l +... 

Also, substituting 7rn(t) and 7rn+I(t) in (2.9) from (2.3) and (2.4), one finds, 
after a simple computation, 

(2.11) 
n-lI 

P2n+ 1(t) = t2n+1 - (2ia+ an) t2n 
i=O 

2 n 
n-I~~~~~~~~~~2n- 

+ g ai) + 2 E aiaj- (21l~i +fln +f/n+l ) ] t + 

i<i 

Equatingthe coefficients of t2n and t2n-I gives 

n-I 

2Zai+ an= (2n+ l)ml, n > 1 
i=O 

Xn-I 2 n n-1I 

(2.12) (ni) +2 aaj-2fli+fln+fln+) 

i<j 

2n2 
+ 

[(2n + )M2 -M2 n >1. 

Now from (2.2) we find 

(2.13 ao = ml fl 
2 _ 2 ,2 
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which, inserted into (2.12), yields, for n = 1, 

(2.14) al = m1, ,2 2 2 1 

and for n = 2, 

(2.15) a2 =m, M l3 = O 

This contradicts the fact that flA > 0. 5 

The negative result of Theorem 2.2 leads us to explore the possibility of 
having Gauss-Kronrod formulae with equal weights only for n even. We restrict 
our search among the positive measures of the type da (t) = w(t)dt, where w(t) 
is even, with symmetric support (-a, a). Thus, we want (1.2) to have the form 

a Yo n n+1 1 
(2.16) f(t)oj(t)dt= 2n+1 + ZE(v)+Ef(T) +R(), n=2k. 

Since du is an even measure with symmetric support, using orthogonality and 
(1.3), one easily shows by uniqueness that 7n and 7r* are always either even 
or odd depending on the parity of n, that is, 

(2.17) 7tn(-t) = 
(-l)n 7tn(t) r n=0, I,2, .... 

7r+1 (-t) = (-1)n+l 7+l (t), n = 0, 1, 2,. 
Consequently, the Tv and Tz in (2.16) are symmetric with respect to the origin. 
Setting f(t) = g(t2), g E IP[(3n+l)/2], where [.] denotes the integer part of a 
real number, it follows by symmetry that 

I(a _4+1kgz) k 

(1 g(t2 )w(t) dt 
- 4 k + g(T*2) + ~g(O)J 

for all g E P3k- 

Letting t = x112, so that dt = Ix -12dx, we get 
a2 

j g(x)wO(x112)x-112 dx 

(2.19) 2 k k 
k +O g(T) + : g(T 2) + ,g(0) for all g E P3k* 

4k + 1 v= 2t~ 

If Zj(x) = W(xI12)x-1/2 and ii = a2, then 7i0 = io, 1T = T2, and T = 2 

where for the rest of this section all the quantities carrying a bar refer to the 
measure d-(x) = ZJ(x)dx on (0, ii). Replacing x by t in (2.19), we obtain 

(2.20) d2k + 1/2 g(tv) 
+ 1) g(fP 

for all g E P3k- 

Therefore, it comes down to examining if there exist Gauss-Kronrod formulae 
of the type (2.20), that is, one of the zeros of xf* is 0, and all the weights are 
equal except the one corresponding to the node at 0. 
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Our findings are given in the following: 

Theorem 2.3. There is no positive measure of the form da(t) = wo(t)dt, where 
co(t) is even, with symmetric support (-a, a), for which (1.2) has equal weights 
for all n even. 
Proof. To prove the theorem, it suffices to show that there is no Gauss-Kronrod 
formula of the type (2.20). If we assume that such a formula exists, by much 
the same way as in the proof of Theorem 2.2, we find that -P2k+1 (cf. (2.9)) 
must have the form 

P2k (t) = t2k+1 - (2k + mi1t2k 

(2.21) + 2k +1/2 + 

where mlfI = AlI/80 and m = 12/UO* Then from (2.21) and (2.11), with 

P2k+1 in place of P2n+1 , we obtain the equations 
k-I 

2 E: Tii+ Tik =2k + 2) ml, k > 1, 
i=O 

k- 2 k (k-1\ 

(2.22) Ti) +2 E zigij- 12Vti + R+RI 
i=O i, j=O i=1 

i<j 

_2k + 1/2[(2kI 2 2l > 

2 [(+ m 2) ]-m2 

where i = aj(d-) and /3i = flj(d-). From (2.13) we have 

(2.23) io =ml, fli = iH2 - i I 

Then (2.22) gives, for k = 1, 

(2.24) jIi =IhMl , f, =4(r 2 _ 1-r2) 

and for k = 2, 

(2.25) 2=m, /3 = - I m2 

which contradicts the fact that l33 > 0. 5 

3. GAuss-KRONROD QUADRATURE FORMULAE 
ALMOST OF CHEBYSHEV TYPE 

Throughout this section da is a positive and even measure da(t) = da(-t) 
on (-1, 1) . Then some of the quantities and formulae of the previous sections 
take a special form. First, it is clear from (1.1) that 

(3.1) yj=0 foralliodd. 

Also, 7ri is either even or odd depending on the parity of i (cf. (2.17)). Then 
it follows from (2.2) that 

(3.2) ai=0, i=0, 1,2, 
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Moreover, (2.4) with n = 1 implies 

(3.3) 7t*(t) = t2 _ (fil + fl2), 

hence (cf. (2.9) with n = 1) 

(3.4) p3(t) = 7ri(t)7r2*(t) = t3 - (flu + fl2)t = 

where for the last equality in (3.4) we used (2.3) and (2.17). Therefore, for 
n = 1, the Gauss-Kronrod formula is the 3-point Gauss formula. (The same is 
true if the support of da is any interval symmetric with respect to the origin.) 
We want to determine if there are any other positive and even measures da 
on (-1, 1), besides the Chebyshev measure of the first kind, for which the 
Gauss-Kronrod formula has the form 

f (t) du (t) = -[f (rlu) + f(,r*) + f(,r)] + RK(f) 

n 

(3.5) f(t) da(t) = w E f(rr) + wIf(-1) 
-1 Jv=1 

n 

+W f(Tr)+wuf(1)+RK(f), n > 2 
,i=2 

that is, for all n > 2 two of the zeros of 7r*4 are + 1, and all the weights are 
equal except those corresponding to the nodes at + 1 . 

The existence of quadrature formulae of this kind is described in the follow- 
ing: 

Theorem 3.1. The only positive and even measure da on (-1, 1) for which the 
Gauss-Kronrod quadrature formula has theform (3.5) is the Chebyshev measure 
of the first kind dac(t) = (1 - t2)-1"2dt. 
Proof. We proceed along the lines of the proof of Theorem 2.2. Assume that 
for the positive and even measure da on (- 1, 1) the Gauss-Kronrod formula 
is of the type (3.5). First, (3.1) implies that ml = pllpo = 0. Then from 
(2.13) we find 

(3.6) l = m22, 

where m22 = j2/1Uo, and for n = 1, as in the proof of Theorem 2.2 (cf. 
(2.14)), we get 

(3.7) I2 =m2. 

If n > 2, since da is an even measure with symmetric support, the rT, and T* 
in the second formula in (3.5) are symmetric with respect to the origin. Also, 
this formula is exact for f (t) = 1 and f (t) = t2; hence we obtain, after setting 
WI = CW, 

(2n+2c- 1)w =,uo, 

(3.8) w (nTV+?TH +2C) = 2, 
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from which it follows that 
n n 

(3.9) T. + EZr2 + 2 = (2n + 2c- l)m2 + 2(l -c). 
v=1 ,u=2 

Because of this, P2n+I (cf. (2.9)) must have the form 

(3.10) P2n+I W = t2n+l _ (n+C- 2) 22 + c t2n-1 + * - . 

Moreover, from (2.11) and (3.2) wehave 

(3.11) P2n+1(t) = t2n+ (2Z13i+ fin + n+l) t2n-1 + 

By equating the coefficients of t2n-I, we derive the equation 
n-I 

(3.12) 2Z13i+1fn+fln+l = (n+c- )m2 +1-c, n>2. 
i= 1 

Applying (3.12) for two successive values of n, and then subtracting the two 
equations, we get 

(3.13) fin + n+2 =M 2, n > 2, 

which, by means of (3.7), gives 

(3.14) 32j = m1 j= 1, 2. 

Now using (1.3) with i = 2, 3, (2.1), and orthogonality, we find, after a 
lengthy but straightforward computation, that c2 and c3 in (2.5), when da is 
an even measure, are given by 

(3.15) C2= 0, C3 = (fin-I - fln+2)fln+l. 

Then from (2.5), (2.6), (3.15), and (2.1) we get analytic expressions for 7(* 
and 7r 

JC3*(t) = t3 _ (fil /2+ S) 
(3.16) 3(t -(l + 132 + 133)t, 

7t*(t) = t4 - (fi+S2 32+ 13 + 134)t2 + f13 + 13134 + 132134 - 134135 

Since t(+ 1) = 0 and 2tr(+1) = 0, we obtain the equations 

3.17 
1- A(fl + 32 + 33) = 0, 

(3.17) 1 -(fl- +132+133+134)+13fl33+13l34+32134-134135 0- 

These, together with 

(3.18) =31= 2f2 = 2134 

(cf. (3.6) and (3.14)), yield 

(3.19) 834(33 - 35) = 0, 

which, on account of 134 > 0, gives 

(3.20) 133 = 135- 

Then (3.13) implies 

(3.21) 132j+1 j= I2j 1,2, ... 
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so finally 

(3.22) f1 = m,2 2 i = 2, 3. 

Substituting IA1 fl2, l3 from (3.22) into the first equation in (3.17), we obtain 

(3.23) M= 2. 

Therefore, 

(3.24) 31=21 i=4 i =2, 35 ....5 

and da is the Chebyshev measure of the first kind. El 
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